The potential effect of gender in combination with common genetic polymorphisms of drug-metabolizing enzymes on the risk of developing acute leukemia.

نویسندگان

  • Pascual Bolufer
  • Maria Collado
  • Eva Barragán
  • José Cervera
  • María-José Calasanz
  • Dolors Colomer
  • José Roman-Gómez
  • Miguel A Sanz
چکیده

BACKGROUND AND OBJECTIVES We examined common polymorphisms in the genes for glutathione S-transferase (GST), cytochrome P450 (CYP), quinone oxoreductase (NQO1), methylene tetrahydrofolate reductase (MTHFR), and thymidylate synthetase (TYMS) and the role of gender associated with the susceptibility to de novo acute leukemia (AL). DESIGN AND METHODS We conducted a case-control study analyzing the prevalence of the polymorphisms CYP1A1*2A, CYP2E1*5B, CYP3A4*1B, del{GSTT1}, del{GSTM1}, NQO1*2, MTHFR C6777, and TYMS 2R/3R in 443 patients with AL [302 with acute myeloblastic leukemia (AML) and 141 with acute lymphoblastic leukemia (ALL)] and 454 control volunteers, using polymerase chain reaction (PCR)-based methods. RESULTS We found a higher incidence of del{GSTT1} in patients with AML than among controls (25.6% vs. 13.7%, OR=2.2, p<0.001) and a higher incidence of NQO1*2 homozygosity (NQO1*2hom.) in males with the M3 FAB subtype than in control males (8.6% vs. 2.2%, OR=4.9, p=0.02). The del{GSTT1} and NQO1*2hom. polymorphisms increased the risk of ALL (OR=2.2 and 3.0, p=0.001 and 0.003, respectively). The higher risk conferred by NQO1*2hom. and del{GSTT1} mainly affected males (OR=6.1 and 2.4; p=0.002 and 0.005, respectively). INTERPRETATION AND CONCLUSIONS Males harboring NQO1*2hom. and del{GSTT1} polymorphisms showed a higher risk than females of developing AL. Thus, gender might influence the risk of AL associated with these genetic polymorphisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influences of Genetic Abnormality on the Risk of Acute Lymphoblastic Leukemia

Recent studies have provided evidence that common genetic variations could account for a proportion of leukemia in adult or children. To evaluate the contribution of candidate gene association studies to the understanding of genetic susceptibility to acute lymphoblastic leukemia we conducted a systematic review from published studies. The polymorphisms of genes encoding carcinogen-metabolizi...

متن کامل

Assessment of Thiopurine–based drugs according to Thiopurine S-methyltransferase genotype in patients with Acute Lymphoblastic Leukemia

For the past half century, thiopurines have earned themselves a reputation as effective anti-cancer and immunosuppressive drugs. Thiopurine S-methyltransferase (TPMT) is involved in the metabolism of all thiopurines and is one of the main enzymes that inactivates mercaptopurine. 6-MP is now used as a combination therapies for maintenance therapy of children with acute lymphocytic leukemia (A...

متن کامل

Genetic polymorphisms of superoxide dismutase-1 A251G and catalase C-262T with the risk of colorectal cancer

Oxidative stress is significant in numerous types of disease including cancer. To protect cells and organs against reactive oxygen species (ROS), the body has evolved an antioxidant protection system that involved in the detoxification of ROS. Single nucleotide polymorphisms (SNP) of anti-oxidative enzymes may dramatically change the activity of the encoded proteins; therefore, certain alleles ...

متن کامل

Association of TPMT (rs1800460) Gene Polymorphism with Childhood Acute Lymphoblastic Leukemia in a Population from Guilan, Iran

Acute lymphoblastic leukemia (ALL) is a malignant transformation and proliferation of lymphoid progenitor cells in bone marrow and blood, which is mainly found in children. Thiopurine methyltransferase (TPMT) is a thiopurine drug metabolizer enzyme that is prescribed for the treatment of ALL. Several single nucleotide polymorphisms in the TPMT gene have been reported to be associated with the d...

متن کامل

I-33: Pharmacogenetics of Reproductive Medicine

Adverse drug reactions (ADRs) are a major problem in drug therapy and drug development. Inter-individual genetic differences can have significant roles in determining an individual’s susceptibility to ADRs. The rapid development of techniques in the area of genome analysis has put the scientific community in a power position and facilitated identification of new pharmacogenomic biomarkers that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Haematologica

دوره 92 3  شماره 

صفحات  -

تاریخ انتشار 2007